Hidden leak or how measurement supports integration of energy efficiency measures

Record energy consumption rates are skyrocketing in the manufacturing industry: Europe’s answer is the energy tax.

Elvira Rakova,
PhD

With a worrying 75% increase in greenhouse-affecting gases generated by electricity provision and consumption, manufacturing companies served a possible killer blow to the European Commission.

In fact, the manufacturing industry is extremely “energy-consuming” and contributes to almost one-third of the world’s energy consumption.

Focused on the climate neutrality goal, thought to be reached by 2050, the new green deal’s main enemies have become manufacturing companies: the not-so-far-from-reality project of an energy tax will hugely impact the balance sheets of potential tardy companies in adapting to greener standards.

What’s the consumer’s point of view on ECO politics?
No doubt the above news is terrible for tardy and even future-set companies, as already one in three buyers considers sustainability a priority factor, second to neither quality nor price.

A realistic and great example of how to get to zero emissions is that of Amazon, a pioneer and model company, which set the goal of achieving this by 2040.

Amazon’s ‘first steps’ were pretty gigantic ones: on one side purchasing 100,000 electric vehicles for their deliveries, on another investing $2 billion in carbon emission-reducing technologies and services, and finally dedicating another $100 million to reforestation and climate mitigation projects.

IF sustainability is not relevant to consumers, then why would Amazon invest so much just to benefit from ‘first mover advantage’?

Statistics say sustainable investments represent at least 32% of the total managed capital consisting of over 31 thousand billion of US dollars (source – Global Sustainable Investment Alliance).

Amazon is not the only one. All ethical companies intending to take full advantage of the upcoming energy transition (soon a mandatory one) are proceeding following these key points:
• Energy efficiency
• Monitoring
• Zero waste production
• CO2 Footprint

In general, all four points are connected and cannot be implemented separately. Continuous monitoring leads to a clear understating of energy-saving potential, actual saving measures, and therefore, reduced waste and CO2 footprint.

Decision-making on the implementation of energy-saving is usually based on ROI with continuous monitoring dramatically decreasing investment. But the decision has to be based on the process requirement and might even be reconsidered. Let’s have a look at how measurements are important even when they partially correlate with simulation and how a wine filling machine can trick you about a ‘good’ leak.

The story of process optimization
The PET industry is a big consumer of compressed air, high-pressure productivity, and filling volumes, therefore, offer good potential for energy savings.

The filling section of the machine is capable of filling up to 1,200 bottles per minute.
After passing the rinser, the pneumatic cylinder lifts and seals the bottle by the filling element, and the filling process starts. After the filling of the bottle is complete, the bottles are lowered again and handed over to the bottle capper. Each filling valve has six pneumatic actuators which are controlled individually via associated switching valves. The actuators are single-acting diaphragm cylinders. The goal was to reduce the energy consumption of the process and to find the most efficient solution.

To validate the model, the measurement of the total volume flow, the pressure in the cylinder chambers, and the pressure profile in the bottle were measured for various process gas and operating pressures.

The measurement and simulation results show an excellent correlation for the main process of pressurization of the bottle, however, reveal deviation in compressed air consumption (see Figure 1). The oscillation in the experimental results refers to the supply pressure oscillation due to the actuation of two valves with one valve block.

The results of the compressed air consumption of the valve for one working cycle show the measured value is 1.24 Nl for the experiment and the simulated 0.96 Nl, with a deviation of 22.7 %.

The high variance is the result of the leakage mass flow during the bottle filling process.
These leakages also operate as additional valve sealing and cleaning and where necessary for the process! However, the model shows good valves dynamics and is used for further validations.

Figure 1: Simulation (dash line) and measurement (full line) results of the bottle filling process.

The identification of an energy consumption profile allowed further optimization of the system even with the assumption of the necessary leak rate.

In this case, the design parameters of the actuator have been changed. As can be seen, the saving of the compressed air consumption is approx. 25% only due to the correct sizing. Moreover, the main criterion for this application was the fulfillment of the task regarding the sealing process with the air. The bottom-right graph Figure 2 shows the simulation (solid line) and measurement results (dashed line) of the pressure in the bottle.
The process fulfills all dynamic requirements.

Figure 2: Simulation (dash line) and measurement (full line) results of the bottle filling process after the optimization.

While the simulation results helped to improve functionality, it would not be possible to do without measurement to identify the high leak rate. Additional to optimization of consumption, the process of sealing with the exhaust air can be reconsidered, for example, while using other materials or other sealing technology.

In this case, measurement helps to implement energy-saving measures, reducing waste and CO2 impact.

Measurement supports not only the optimization but the trend of the processes. It helps you not only to understand savings but to evaluate the process itself and reconsider the core of your business to be better in the future.

More from the Newsletter

FOR INVESTORS

Enersize signs LOI with Akila to explore decarbonization in China and APAC through digital twin platform

Enersize Advanced Research AB (“Enersize” or the “Company”) has signed a letter of intent (“LoI”) with Akila Information Systems Ltd (“Akila”), recently named one of the World Economic Forum’s 100 global Technology Pioneers for 2022. Akila is a subsidiary of Hong Kong-based Aden Services (Group) Co., Ltd (“Aden”). And this LoI is an important milestone towards a fully developed partnership where Enersize Compressed Air Services are integrated into the Akila Services and its data platform which uses digital twin and AI technologies to empower data-driven decision making and ESG reporting for large and multinational portfolios.

Läs mer »

Notice of Enersize Plc’s Annual General Meeting

Notice is given to the shareholders of Enersize Plc (“Enersize” or the “Company”) to the Annual General Meeting (the “AGM”) to be held on Friday, 3 June 2022 at 1.00 p.m. (CET) at Eversheds Advokatbyrå, Strandvägen 1, 114 51 Stockholm, Sweden.

Läs mer »

Enersize strengthens the management team – Intensifies development work and improves gender equality

Nasdaq First North-listed Enersize strengthens the management team with Stephanie Alvarez Fernandez in the role of CTO, and Rebeca Rubio López as Software Manager. The company has carried out a number of key recruitments within the research and development department in order to accelerate the work of developing the next generation of cloud-based software for compressed air optimization.

Läs mer »

NEWS